
11
Using LaTeX in

Science and Technology

While the prior chapter focused on mathematics, we’ll now explore various scienti!c !elds such as
chemistry, physics, computer science, technology, and electronics. Given the signi!cant reliance on
mathematics in these disciplines, make sure you also explore Chapter 10, Writing Advanced Mathematics.
"is chapter will be an overview, showing speci!c recipes for how LaTeX can be used across diverse
scienti!c domains.

We’ll cover the following main topics:

• Typesetting an algorithm

• Printing a code listing

• Programming with Lua

• Creating graphs

• Writing quantities with units

• Drawing Feynman diagrams

• Writing chemical formulas

• Drawing molecules

• Representing atoms

• Drawing molecular orbital diagrams and atomic orbitals

• Printing a customized periodic table of elements

• Drawing electrical circuits

"is chapter aims to showcase various packages through practical examples while providing insights
into their utilization. For more intricate details, the manuals of these packages serve as a reference.

Using LaTeX in Science and Technology320

Typesetting an algorithm
An algorithm constitutes a fundamental concept within computer science. It represents a systematic
set of step-by-step operations executed to accomplish speci!c tasks, such as calculations or data
processing, e.g., sorting.

Algorithms can be visualized using a #ow chart, which we made in Chapter 6, Creating Graphics. In
this recipe, we will print an algorithm using pseudocode with syntax highlighting. Our example will
show the calculations that display the Mandelbrot set, a visually stunning classic fractal generated
by computations involving complex numbers.

How to do it...

We will utilize the algorithmicx package written by Szász János. We will break down the process
into several small steps for more transparent comprehension. As usual, the complete code is available
for download from https://latex-cookbook.net, eliminating the need for manual typing.
At the end, you will see an image with the output. Consider switching between the output image and
the quite comprehensive instructional steps to observe the incremental construction of the algorithm
layout. Here it goes:

1. As usual, start with a document class. Load additional packages you intend to use; in this case,
we need the dsfont and mathtools packages:

\documentclass{article}
\usepackage{dsfont}
\usepackage{mathtools}

2. Load these three algorithm packages:

\usepackage{algorithm}
\usepackage{algorithmicx}
\usepackage{algpseudocode}

3. You can de!ne your own commands—in our case, a statement for local variables:

\algnewcommand{\Local}{\State\textbf{local
 variables: }}

4. We de!ne any other macros we need. We’ll also create a shortcut \Let command for recurring
variable assignments using the \State command. To ensure proper le$-hand side alignment,
we’ll use the \mathmakebox command to put an argument in a box with a minimum width
of 1em:

\newcommand{\Let}[2]{\State
 $\mathmakebox[1em]{#1} \gets #2$}

https://latex-cookbook.net

Typesetting an algorithm 321

5. Start the document:

\begin{document}

6. Open an algorithm environment:

\begin{algorithm}

7. Provide a caption and a label for cross-referencing:

 \caption{Mandelbrot set}
 \label{alg:mandelbrot}

8. Start an algorithmic environment with an n option for numbering every nth line. We
choose 1 as this option, numbering each single line:

 \begin{algorithmic}[1]

9. You can state requirements if any exist:

 \Require{$c_x, c_y, \Sigma_{\max} \in \mathds{R},
 \quad i \in \mathds{N}, \quad i_{\max} > 0,
 \quad \Sigma_{\max} > 0$}

10. We write down the function name with arguments:

 \Function{mandelbrot}{$c_x, c_y, i_{\max},
 \Sigma_{\max}$}

11. Now we use our own \Local macro for declaring local variables:

 \Local{$x, y, x_1, y_1, i, \Sigma$}

12. We use a statement to initialize local variables:

 \State $x, y, i, \Sigma \gets 0$}

13. We can add a comment to the line:

 \Comment{initial zero value for variables}

14. Now, write down a while loop that contains assignments:

 \While{$\Sigma \leq \Sigma_{\max}$
 and $i < i_{\max}$}
 \Let{x_1}{x^2 - y^2 + c_x}
 \Let{y_1}{2xy + c_y}
 \Let{x}{x_1}
 \Let{y}{y_1}

Using LaTeX in Science and Technology322

 \Let{\Sigma}{x^2 + y^2}
 \EndWhile

15. Add an if … then conditional statement:

 \If{$i < i_{\max}$}
 \State \Return{i}
 \EndIf

16. We specify a return value and end the function:

 \State \Return{0}
 \EndFunction

17. End all open environments and the document:

 \end{algorithmic}
\end{algorithm}
\end{document}

18. Compile and take a look at the outcome:

Figure 11.1 – An algorithm with pseudocode

How it works...

"e algorithm environment is a wrapper that allows the algorithm to #oat to a good position, just
like !gures and tables. So, page breaks within algorithms are avoided and pages can be well !lled.
Furthermore, it supports captions and labels for cross-referencing and adds the \listofalgorithms
command, which generates a list of algorithms similar to a list of !gures.

Algorithm 1 Mandelbrot set

Require: cx, cy,Σmax ∈ R, i ∈ N, imax > 0, Σmax > 0
1: function mandelbrot(cx, cy, imax,Σmax)
2: local variables: x, y, x1, y1, i,Σ
3: x, y, i,Σ← 0 ! initial zero value for variables
4: while Σ ≤ Σmax and i < imax do
5: x1 ← x2 − y2 + cx
6: y1 ← 2xy + cy
7: x ← x1

8: y ← y1
9: Σ ← x2 + y2

10: end while
11: if i < imax then
12: return i
13: end if
14: return 0
15: end function

Printing a code listing 323

"e inner algorithmic environment does the speci!c typesetting. It supports commands that are
commonly used in algorithm descriptions. "ese are the commands we used:

• "e \Require command is for a short list of requirements for the algorithm. "e output
starts with the Require: keyword in bold.

• "e \Function command prints the function keyword in bold, followed by the function
name in small caps and parameters in parentheses. "e \EndFunction command prints
end function in bold.

• "e \While and \EndWhile commands generate a loop in the manner while ... do ...
end while.

• "e \If and \EndIf commands generate a conditional statement in the manner if ... then
... end if.

• "e \State command starts a new algorithm line with a suitable indentation.

"e complete set of commands is described in the package manual, accessed by inputting texdoc
algorithmicx or going to https://texdoc.org/pkg/algorithmicx.

There’s more...

"ere’s more than the pseudocode style. You can use the algpascal layout, which supports Pascal
language syntax and performs the block indentation automatically. To achieve this, replace the command
\usepackage{algpseudocode} with the command \usepackage{algpascal}. In the
same way, you can use the algc layout instead, which is the equivalent of the C language.

Experienced users may de!ne their own command sets. "is and existing layout features are described
in the package manual.

Printing a code listing
Documentation o$en includes code snippets, as well as computer science theses. While the !rst recipe
of this chapter handed pseudocode for algorithms and the subsequent recipe did actual programming,
our focus now shi$s to typesetting the code. To keep it concise, we’ll use a simple “hello world”
program as an example.

How to do it...

We’ll utilize the listings package initially written by Carsten Heinz and designed explicitly for
this task. Follow these steps:

1. Start with any document class:

\documentclass{article}

https://texdoc.org/pkg/algorithmicx

Using LaTeX in Science and Technology324

2. Load the listings package:

\usepackage{listings}

3. Begin the document:

\begin{document}

4. Begin a lstlisting environment with an option for the language:

\begin{lstlisting}[language = C++]

5. Continue with the code you would like to print:

// include standard input/output stream objects:
#include <iostream>
// the main method:
int main()
{
 std::cout << "Hello TeX world!" << std::endl;
}

6. End the lstlisting environment and the document:

\end{lstlisting}
\end{document}

7. Compile and have a look at the output:

Figure 11.2 – A C++ listing

How it works...

"e fundamental steps are straightforward:

1. Load the listings package.
2. Enclose each code listing within a lstlisting environment, optionally specifying the

language as seen previously.

// inc l ude standard input / output stream o b j e c t s :
#include <iostream>
// the main method :
int main ()
{

std : : cout << ”He l lo TeX world ! ” << std : : endl ;
}

Printing a code listing 325

"e manual provides a comprehensive list of supported languages, continually expanding for over 25
years. You can de!ne your own language style or !nd one for your favorite language online.

Commands and environments within the listings package use the \lst pre!x to avoid naming
con#icts with other packages.

You can tailor the appearance of all your listings with a single command:

\lstset{key1 = value1, key2 = value2}

"is command o%ers an extensive key=value interface with numerous keys. Let’s look at how to
use it, focusing on particularly useful keys.

Modify the preceding example in this way:

1. Add the xcolor package to your document preamble:

\usepackage{xcolor}

2. Load the inconsolata package to utilize an excellent typewriter font:

\usepackage{inconsolata}

3. De!ne macros, such as the programming language logo, to maintain a consistent appearance:

\newcommand{\Cpp}{C\texttt{++}}

4. A$er \usepackage{listings}, insert settings via key=value:

\lstset{
 language = C++,
 basicstyle = \ttfamily,
 keywordstyle = \color{blue}\textbf,
 commentstyle = \color{gray},
 stringstyle = \color{green!70!black},
 stringstyle = \color{red},
 columns = fullflexible,
 numbers = left,
 numberstyle = \scriptsize\sffamily\color{gray},
 caption = A hello world program in \Cpp,
 xleftmargin = 0.16\textwidth,
 xrightmargin = 0.16\textwidth,
 showstringspaces = false,
 float,
}

Using LaTeX in Science and Technology326

5. With these settings, you can now utilize the \begin{lstlisting} command without
additional arguments. Compile your adjusted example and observe the changes:

Figure 11.3 – A customized listing

There’s more...

Like the standard LaTeX verbatim environment and the \verb command, lstlisting provides
a companion for embedding small code snippets inline—the command \lstinline does it. Write
it as follows:

Use \lstinline!#include <iostream>! for
including i/o streams.

You can use any character as a delimiter instead of the exclamation mark as long as it doesn’t appear
in the code snippet.

For longer listings, you can save them in external !les. Instead of the standard \input command,
use the following command:

\lstinputlisting[options]{filename}

"e same options available for the lstlisting environment can be applied here. For instance, the
following command includes only lines 4 to 10:

\lstinputlisting[firstline=4, lastline=10]{filename}

"is allows the breakdown of lengthier listings along with explanatory text.

Similar to the regular LaTeX \listoffigures command, you can generate a list of listings with
their captions using the \lstlistoflistings command.

Listing 1: A hello world program in C++

1 // include standard input/output stream objects:
2 #include <iostream>
3 // the main method:
4 int main()
5 {
6 std::cout << "Hello TeX world!" << std::endl;
7 }

Programming with Lua 327

Programming with Lua
While LuaTeX comes with numerous more advancements regarding, for example, font support and
MetaPost graphics support, we will focus on pure Lua programming in this section to carve out
bene!ts to program and use algorithms.

TeX, primarily a text-processing language, has limited programming capabilities and needs advanced
data-handling functionalities. "at makes general-purpose programming a challenge. To address
this, TeX developers sought a scripting language to add modern programming capabilities. "eir
strategic choice was Lua, a versatile, lightweight, and highly portable scripting language designed
to be embedded in other applications. "is decision led to the development of LuaTeX, a new TeX
engine that, combined with the LaTeX format, is called LuaLaTeX.

While LuaTeX o%ers various advancements, including enhanced font and MetaPost support, this recipe
uses pure Lua programming to run algorithms directly within our LaTeX document.

Note
Use the LuaLaTeX compiler option in your LaTeX editor for the examples in this chapter.

How to do it...

Let’s implement an iterative algorithm, Heron’s method (also called the Babylonian method), to
calculate the square root of a number. "is method is detailed at https://en.wikipedia.
org/wiki/Methods_of_computing_square_roots#Heron’s_method. In essence,
it works as follows:

1. Start with an estimate, x, which could approximate the square root of n.
2. If x is smaller than the actual square root, then n/x is larger than the root since x*x = n is

our objective. Conversely, if x is greater than the root, n/x would be smaller. To re!ne our
approximation, we select the average of x and n/x as the new value for x.

3. Go back to step 2 and repeat this process multiple times.

Let’s see how to do this calculation in LaTeX! Follow these steps to get the square root of 2:

1. Start with any document class:

\documentclass{article}

2. Load the luacode package for extended Lua support:

\usepackage{luacode}

Using LaTeX in Science and Technology328

3. Begin the document with some text:

\begin{document}
The value of $\sqrt{2}$ is \approx

4. Open a luacode environment:

\begin{luacode}

5. Now use Lua—declare your variable x with an initial value of 1:

 local x = 1
 for i=1,10 do
 x = (x + 2/x)/2
 end

6. Print the result to the LaTeX document:

 tex.print(x)

7. End the luacode environment and the document:

\end{luacode}
\end{document}

8. Compile using LuaLaTeX and have a look at the output:

Figure 11.4 – Output of text and calculated result

How it works...

We utilized a luacode environment from the package by Manuel Pégourié-Gonnard to embed a
Lua program in our LaTeX document. We de!ned a variable and employed a for loop to compute
the !nal value through ten iterative repetitions. Using the tex.print command, we displayed the
value of the Lua variable within our document.

"e Lua language is comprehensively documented at https://www.lua.org/docs.html.

While we went through this example to understand how to embed Lua code, there’s an alternate
calculation method. Lua features a mathematical library that provides various mathematical functions.
For instance, to print the value of the square root of 2, you could execute this command:

tex.print(math.sqrt(2))

The value of
√
2 is ≈1.4142135623731

https://www.lua.org/docs.html

Programming with Lua 329

You don’t need the luacode environment and package for small Lua code snippets such as this.
You can execute any single-line Lua code using the \directlua command. You can modify the
previous code to have this as the LaTeX document body:

The value of $\sqrt{2}$ is
\approx\directlua{tex.print(math.sqrt(2))}.

"e output will be the same as in the previous !gure. "e mathematical library is documented in
Section 6.7 of the current Lua reference manual, with version 5.4 available at https://www.
lua.org/manual/5.4/manual.html#6.7, and you can !nd examples for all functions at
http://lua-users.org/wiki/MathLibraryTutorial.

There’s more...

Let’s explore a more comprehensive example that shows the excellent integration of Lua with LaTeX.
Utilizing the pgfplots package developed by Christian Feuersänger alongside Lua, we’ll generate
an image illustrating the Mandelbrot set through the algorithm outlined at the beginning of this
chapter. Follow these steps:

1. Start with any document class. I opted again for the standalone class with some white margin:

\documentclass[border=10pt]{standalone}

2. Load the pgfplots package and initialize it with options for the plot width and the version
for compatibility:

\usepackage{pgfplots}
\pgfplotsset{width=7cm, compat=1.18}

3. Load the luacode package and open a luacode environment:

\usepackage{luacode}
\begin{luacode}

4. Enter the following Lua code for a function declaration following the algorithm detailed at
the beginning of this chapter. De!ne and initialize local variables with an initial value of zero,
perform calculations within a while loop, and transfer the result to TeX:

 function mandelbrot(cx, cy, imax, smax)
 local x, y, x1, y1, i, s
 x, y, i, s = 0, 0, 0, 0
 while (s <= smax) and (i < imax) do
 x1 = x * x - y * y + cx
 y1 = 2 * x * y + cy
 x = x1
 y = y1

https://www.lua.org/manual/5.4/manual.html#6.7
https://www.lua.org/manual/5.4/manual.html#6.7
http://lua-users.org/wiki/MathLibraryTutorial

Using LaTeX in Science and Technology330

 i = i + 1
 s = x * x + y * y
 end
 if (i < imax) then
 tex.print(i)
 else
 tex.print(0)
 end
 end

5. End the l u a c o d e environment, begin the document body, and open a
tikzpicture environment:

\end{luacode}
\begin{document}
\begin{tikzpicture}

6. Like in the previous chapter, open a pgfplots axis environment with the following options
in square brackets:

\begin{axis}[
 colorbar,
 point meta max = 30,
 tick label style = {font=\tiny},
 view={0}{90}]

7. Use the \addplot3 command to generate a 3D plot. "e Z-values of the plot command are
calculated using the \directlua command with the mandelbrot function:

 \addplot3 [surf, domain = -1.5:0.5, shader = interp,
 domain y = -1:1, samples = 200]
 { \directlua{mandelbrot(\pgfmathfloatvalueof\x,
 \pgfmathfloatvalueof\y,10000,4)} };

8. Close the axis and tikzpicture environment and !nish the document:

 \end{axis}
\end{tikzpicture}
\end{document}

9. Compile the document using LuaLaTeX. "e complex calculation may take some time. "is
is the generated plot:

Creating graphs 331

Figure 11.5 – The Mandelbrot set

How it works...

We combined a luacode environment, where we de!ned a Lua function, with the \directlua
command in the document.

We utilized the pgfplots package to iterate through (x,y) values. "e result of the Lua mandelbrot
function is a color. While we aimed to generate a two-dimensional image, the result is used as the Z-value
in a 3D plot. "at Z-value is colored in proportion to its value. "e picture looks two-dimensional
because we chose a viewing angle directly above the xy-plane.

Creating graphs
Graph theory, commonly employed in !elds such as operations research and computer science,
typically involves models and drawings primarily composed of repeated vertices, edges, and labels.
"ere are LaTeX packages that help e&ciently generate consistent graphs.

−1.5 −1 −0.5 0 0.5
−1

−0.5

0

0.5

1

0

10

20

30

Using LaTeX in Science and Technology332

How to do it...

"e tkz-graph package developed by Alain Matthes provides a user-friendly interface, various
precon!gured styles, and extensive customization options. Let’s start with a minimal example:

1. Begin with any document class. In this case, I’ve opted for the standalone class to generate a
compact PDF containing the desired image. Additionally, I’ve included an option for a border
value to create a slight margin around the graph.

\documentclass[border=10pt]{standalone}

2. Load the tkz-graph package:

\usepackage{tkz-graph}

3. De!ne the distance between two vertices in cm:

\SetGraphUnit{3}

4. Begin the document body:

\begin{document}

5. Open a tikzpicture environment. Here, you may optionally rotate the graph, giving a
value in degrees:

\begin{tikzpicture}[rotate=18]

6. De!ne a set of vertices. Optionally, choose a shape for their positioning:

 \Vertices{circle}{A,B,C,D,E}

7. Decide which vertices shall be connected by edges in which order:

 \Edges(A,B,C,D,E,A,D,B,E,C,A)

8. Close the tikzpicture environment and end the document:

\end{tikzpicture}
\end{document}

Creating graphs 333

9. Compile and have a look at the picture:

Figure 11.6 – A basic graph

How it works...

A$er loading the tkz-graph package, we used the \SetGraphUnit command to choose a
value in centimeters for the distance between the vertices because the default value of 1 cm is pretty
small. We did this in the preamble, so it’s applied to all graphs consistently. We can also use the
\SetGraphUnit command in the document within the tikzpicture environment. In that
case, it applies only to the current TikZ picture.

We used the \Vertices command to de!ne a set of vertices. We can name them using capital letters,
small letters, numbers, or even mathematical expressions such as x_1. "e initial argument de!nes
the geometric structure of the graph, providing various options:

• line: "is option places the vertices along a line.

• circle: "is option places all vertices on a circle.

• square: With this option, the vertices are positioned as corners of a square. "is should be
used only with exactly four vertices.

• tr1, tr2, tr3, tr4: "e vertices are placed in four di%erent types of rectangular triangle
formations. Use it with precisely three vertices.

While that doesn’t look like many choices, you can use several \Vertices commands to build
a complex graph. "ere’s a node option to help with positioning. First, de!ne a node or, better, a
coordinate as follows:

\coordinate (a) at (4,2);

A

B

C

D E

Using LaTeX in Science and Technology334

"en, you can use the Node option to place the vertices starting at that node or coordinate position
like so:

\Vertices[Node]{square}{a,b,c,d}

"at helps in assembling larger graphs by combining multiple smaller graphs.

Finally, we used the \Edges command that generates a sequence of edges by connecting a list of
vertices in their given order.

We can easily modify the appearance of the graph using a single command. Insert the following
command into your document preamble a$er you loaded the tkz-graph package:

\GraphInit[vstyle=Shade]

Compile and see how the graph has changed:

Figure 11.7 – A graph with a shading style

"e vstyle option provides various graph styles, de!ning how vertices are displayed, and some
styles produce non-regular edges:

• Empty: "is option gives simple vertices without a circle or any border.

• Classic: Using this option, vertices are displayed as !lled circles, and the vertex name is
positioned outside of the circle.

• Normal: "is option gives circular vertices with the vertex name inside.

• Simple: "is option generates black-!lled circular vertices without printing the vertex names.

• Art: "is option turns vertices to shaded balls without printing the vertex name in orange by
default. "e edges are regular lines but colored orange, too.

• Shade Art: "is works like the Art option but with thicker orange lines and black borders
for edges.

A

B

C

D E

Creating graphs 335

• Shade: "is option looks like Shade Art but has vertex names inside the balls, just as you
saw in Figure 11.7.

• Hasse: "is style produces circular, non-!lled vertices without printing names.

• Dijkstra: "is style prints circular vertices with the name inside

• Welsh: "is style produces circular vertices with the name outside the vertex node.

"e edges are regular black lines except with the Art, Shade, and Shade Art options.

There’s more...

You can create your own graph style or customize the existing styles. Let’s explore the additional
features with a more complex example. Follow these steps:

1. Like in the previous example, start with the document class, load the tkz-graph package,
choose a basic style, and set a distance between the nodes in centimeters:

\documentclass{standalone}
\usepackage{tkz-graph}
\GraphInit[vstyle = Shade]
\SetGraphUnit{5}

2. Modify the styles called VertexStyle, EdgeStyle, and LabelStyle. Use the .append
style syntax to add new settings to the pre-de!ned style without replacing them. You can
use regular TikZ options as follows:

\tikzset{
 VertexStyle/.append style =
 { inner sep = 5pt, font = \Large\bfseries},
 EdgeStyle/.append style = {->, bend left},
 LabelStyle/.append style =
 { rectangle, rounded corners, draw,
 minimum width = 2em, fill = yellow!50,
 text = red, font = \bfseries}
}

3. You can also use the \renewcommand macro to modify style elements like this for a di%erent
vertex ball color:

\renewcommand{\VertexBallColor}{blue!30}

4. Begin the document and open a tikzpicture environment:

\begin{document}
\begin{tikzpicture}

Using LaTeX in Science and Technology336

5. Declare a !rst vertex B:

 \Vertex{B}

6. Set a vertex A to the west (WE) and C to the east (EA):

 \WE(B){A}
 \EA(B){C}

7. Draw edges between the vertices:

 \Edge[label = 1](A)(B)
 \Edge[label = 2](B)(C)
 \Edge[label = 3](C)(B)
 \Edge[label = 4](B)(A)

8. Add loops, which are edges from a vertex to itself:

 \Loop[dist = 4cm, dir = NO, label = 5](A.west)
 \Loop[dist = 4cm, dir = SO, label = 6](C.east)

9. Adjust the bend angle of the edges for the !nal two wider edges:

 \tikzset{EdgeStyle/.append style = {bend left = 50}}
 \Edge[label = 7](A)(C)
 \Edge[label = 8](C)(A)

10. End the picture and the document:

\end{tikzpicture}
\end{document}

11. Compile and have a look at the result:

Figure 11.8 – A customized graph

BA C

1 2

34

5 6

7

8

Writing quantities with units 337

How it works...

Similar to other recipes in this book, the basic procedure is as follows:

1. De!ne styles.
2. Position vertices.
3. Add edges.
4. Repeat if needed.

For positioning vertices, there’s a simple syntax:

<direction>(B){A}

<direction> can be as follows:

• \EA for placing B to the east of A

• \WE for positioning it to the west

• \NO for positioning it to the north

• \SO for positioning it to the south

• \NOEA, \NOWE, \SOEA, and \SOWE work as combinations of the preceding directional commands

"e entire \Edge syntax is as follows:

\Edge[options](vertex1)(vertex2)

Options can be line width, labels, styles, and colors. For such detailed options, please refer to the
package manual available by running texdoc tkz-graph via the command line or online at
https://texdoc.org/serve/tkz-graph/0.

Writing quantities with units
Unlike pure mathematics, we o$en encounter units alongside quantities in natural sciences such as
chemistry, physics, and engineering. It’s essential to distinguish units from variables. Consider this
example: let’s create a formula that multiplies the speed s of one meter per second by the factor m. At
!rst glance, it might seem straightforward like this:

\(m \cdot s = m \cdot 1 m s^{-1} \)

https://texdoc.org/serve/tkz-graph/0

Using LaTeX in Science and Technology338

"e LaTeX standard output would be as follows:

Figure 11.9 – A bad example of printing variables and units

What do you think about this? Units and variables seem identical. Imagine multiplying both sides of
the equation by s or dividing by m... it becomes pretty perplexing. Furthermore, our space between
1 and m has been lost.

To adhere to common standards in writing, we o$en require the following:

• Upright presentation of units to di%erentiate them from italicized math variables

• A small space between a quantity and its accompanying unit

• Customizable appearance without changing the formula code, especially when a journal
requests a di%erent style

• Semantic writing—replacing abbreviations such as “m” and “s” with complete terms such as
“meters” and “seconds”—enhances clarity

• Intelligent parsing of numbers within quantities

• Incorporating features such as striking out or highlighting to explain a calculation e%ectively

Is it possible to achieve all of these requirements? De!nitely!

How to do it...

"e siunitx package by Joseph Wright o%ers methods to align with international standards for
unit systems while allowing customization to suit various typographic styles.

Now, let’s rectify the formula mentioned earlier by following these steps:

1. Start with any document class:

\documentclass{article}

2. Load the siunitx package:

\usepackage{siunitx}

3. Begin the document:

\begin{document}

m · s = m · 1ms−1

Writing quantities with units 339

4. Write the preceding formula but this time use the command \SI{quantity}{units}:

\(m \cdot s = m \cdot \qty{1}{\m\per\s} \)

5. End the document for now:

\end{document}

6. Compile and take a look:

Figure 11.10 – Improved display of variables, values, and units

7. You can also opt for longer, more natural unit names to achieve the same result as mentioned earlier:

\(m \cdot s = m \cdot \qty{1}{\meter\per\second} \)

8. Let’s adjust the reciprocal units. A$er loading the siunitx package, add the following line
to your preamble:

\sisetup{per-mode = symbol}

9. Compile to see the di%erence:

Figure 11.11 – Alternative display of units

10. If you want to emphasize changes, you can use the cancel and color packages. Add them
to your preamble:

\usepackage{cancel}
\usepackage{color}

11. Let’s test this together with scienti!c, exponential notation. So, modify your formula line as follows:

\(m \cdot s = m \cdot
 \qty{1e-3}{\cancel\m\highlight{red}\km\per\s} \)

12. Compile to see the latest result:

Figure 11.12 – Emphasizing in a formula

m · s = m · 1m s−1

m · s = m · 1m/s

m · s = m · 1× 10−3!!mkm/s

Using LaTeX in Science and Technology340

How it works...

"e command \qty{quantity}{units} accomplishes two tasks:

• It interprets the quantity in its initial argument, e%ectively formatting numbers and comprehending
complex numbers and exponential notations. "e output formatting eliminates unnecessary
spaces and groups large numbers into blocks of three with a thin space.

• It processes the units provided, ensuring proper typesetting with a thin space between the
quantity and unit.

In essence, \qty combines two commands, which you also can use directly:

• \num{numbers} parses numbers in the argument and formats them properly.

• \unit{units} typesets the units. For example, \unit{\kilo\gram\meter\per
\square\second}, or the shorter \unit{\kg\m\per\square\s}, gives the following:

Figure 11.13 – Combined units

"e package implements a basic set of SI standardized units via macros, including derived units. You
can utilize \meter, \metre, \gram, and so on, as well as derived units such as \newton, \watt,
\hertz, among many others. Even non-SI units are supported, such as \hour or \hectare. "e
package also supports common pre!xes such as \kilo, \mega, and \micro. For a comprehensive
list of features, refer to the detailed manual accessible via the texdoc siunitx command from
the command line or by visiting https://texdoc.org/pkg/siunitx.

Drawing Feynman diagrams
A Feynman diagram is a mathematical visualization of the behavior of subatomic particles. "ere are
several ways to generate them using LaTeX.

How to do it...

We will use the tikz-feynman package. "e author documented it in J. Ellis, ‘TikZ-Feynman:
Feynman diagrams with TikZ’, (2016), arXiv:1601.05437 [hep-ph], and you can access the documentation
executing texdoc tikz-feynman via the command line or at https://texdoc.org/pkg/
tikz-feynman.

kgm/s2

https://texdoc.org/pkg/siunitx
https://texdoc.org/pkg/tikz-feynman
https://texdoc.org/pkg/tikz-feynman

Drawing Feynman diagrams 341

"e positions of the vertices are calculated using Lua, so we must compile with LuaLaTeX. Follow
these steps:

1. Start with any document class:

\documentclass[border=10pt]{standalone}

2. Load the tikz-feynman package:

\usepackage{tikz-feynman}

3. Load additional useful TikZ libraries and begin the document:

\usetikzlibrary{positioning,quotes}
\begin{document}

4. Utilize the \feynmandiagram command as follows:

\feynmandiagram [horizontal=a to b] {
 i1 [particle=e^-] -- [fermion] a
 -- [fermion] f1 [particle=e^-],
 a -- [photon, "γ", red, thick,
 momentum' = {[arrow style=red]k}] b,
 i2 [particle=μ^-] -- [anti fermion] b
 -- [anti fermion] f2 [particle=μ^-],
};

5. End the document:

\end{document}

6. Compile and look at the result:

Figure 11.14 – A Feynman diagram

k

γ

e−

e− µ−

µ−

Using LaTeX in Science and Technology342

How it works...

We used i1 and f1 as initial and !nal nodes for one part and i2 and f2 for the other part. a and
b are the nodes in the middle.

fermion, anti fermion, and photon are prede!ned line styles. You can also add TikZ styles.

"e particle option is used to set labels. "e momentum option adds further annotations.

There’s more...

You can consider the alternative packages feynmf and feynmp. Visit https://feynm.net
to explore a gallery of Feynman diagrams generated by various packages. Visit https://wiki.
physik.uzh.ch/cms/latex:feynman to see a vast amount of examples.

Writing chemical formulas
"e presentation of chemical formulas and equations di%ers from mathematical ones in several ways:

• Atomic symbols are represented by upright letters, distinct from italicized mathematical variables

• Numbers are o$en employed as subscripts, signifying the count of atoms.

• "e alignment of numerous subscripts and superscripts is essential for a good formula layout

• Le$ subscripts and superscripts are also required in some cases

• Special symbols for bonds and arrows are necessary for chemical equations

However, accomplishing such requirements is challenging with basic LaTeX. Let’s !nd a more
e%ective solution.

How to do it...

We’ll utilize the chemformula package that Clemens Niederberger wrote to practice chemical
notation in LaTeX. Let’s start:

1. Choose a document class, such as scrartcl of the KOMA-Script bundle, and the
chemformula package and begin with the document:

\documentclass{scrartcl}
\usepackage{chemformula}
\begin{document}

https://feynm.net
https://wiki.physik.uzh.ch/cms/latex:feynman
https://wiki.physik.uzh.ch/cms/latex:feynman

Writing chemical formulas 343

2. Start with an unnumbered section to verify that formulas work in headings. Use the \ch
command for writing formulas. Give atoms and numbers as arguments straight away, without
the _ and ^ syntax used when writing mathematics:

\section*{About \ch{Na2SO4}}
\ch{Na2SO4} is sodium sulfate.

3. Electric charges of ions are written directly without using _ and ^:

It contains \ch{Na+} and \ch{SO4^2-}.

4. Adducts can be denoted with a star or a dot, with numbers automatically identi!ed as stoichiometric
factors. Leave a blank space as a separator as here:

\ch{Na2SO4 * 10 H2O} is a decahydrate.

5. Chemical formulas can also be used in math mode. For instance, create a centered equation
with a forward arrow, also called a reaction arrow, indicated by ->:

\[
 \ch{Na2SO4 + 2 C -> Na2S + 2 CO2}
\]

6. We can have it numbered, too, like math equations. "is time, we use an equilibrium arrow, <=>:

\begin{equation}
 \ch{Na2SO4 + H2SO4 <=> 2 NaHSO4}
\end{equation}

7. If a number is le$ of an atom, it acts as a le$ subscript. But we can clearly indicate the meaning
using _ and ^ before an atom, such as for isotopes:

\section*{Isotopes}
\ch{^{232}_{92}U140} is uranium-232.

8. Di%erent bond types (single, double, triple) are represented by -, =, or +, respectively. We can
see this in a list of hydrocarbons:

\begin{itemize}
 \item \ch{H3C-CH3} is ethane,
 \item \ch{H2C=CH2} is ethylene,
 \item \ch{H2C+CH2} is ethyne.
\end{itemize}

9. "at’s enough for now, let’s !nish the document:

\end{document}

10. Compile and see what you have done:

Using LaTeX in Science and Technology344

Figure 11.15 – Chemical formulas

How it works...

"e input syntax is designed to be natural and straightforward:

• Atoms are represented by letters

• Numbers are automatically formatted as subscripts, signifying the number of atoms in the formula

• Stoichiometric numbers, representing molecule quantities, precede the molecule with a space
in between

"is simplicity not only aids in typing but also allows e%ortless copy-pasting from PDFs, Word
documents, or the internet.

"e most common bonds are written as follows:

• - represents a single bond

• = indicates a double bond

• + signi!es a triple bond

"e following syntax de!nes reaction arrows:

• ->, <-: "ese draw regular arrows pointing to the right or the le$

• -/>, </-: "ese draw broken arrows pointing to the right or the le$ (do not react)

• <->: "is draws a resonance arrow (arrows with tips at the le$ and the right)

About Na2SO4

Na2SO4 is sodium sulfate. It contains Na+ and SO 2–
4 . Na2SO4 ·10H2O is a decahydrate.

Na2SO4 + 2C Na2S + 2CO2

Na2SO4 + H2SO4 2NaHSO4 (1)

Isotopes

232
92U140 is uranium-232.

Hydrocarbons

• H3C CH3 is ethane,

• H2C CH2 is ethylene,

• H2C CH2 is ethyne.

Drawing molecules 345

• <>: "is draws a right-facing arrow at the top and a le$-facing arrow under it

• <=>: "is draws an equilibrium arrow (half of an arrow tip at each side)

• <=>>: "is draws an equilibrium arrow with a tendency to the right, so the top arrow to the
right is larger

• <<=>: "is draws an equilibrium arrow with a tendency to the le$, so the lower arrow to the
le$ is larger

You can incorporate mathematical equations, chemical expressions, or text above or below arrows
by using this syntax:

<=>[\text{above}] [\text{below}]

"e package manual elaborates on more arrow types and additional features. Access it using the
command texdoc chemformula using the command line or open it at https://texdoc.
org/pkg/chemformula.

There’s more...

"e mhchem package operates similarly but varies in certain aspects, as outlined in the chemformula
manual. "e newer chemformula package was designed for enhancements and is part of the
chemmacros bundle, which brings even more features for chemical notation.

A comprehensive collection of TeX chemistry packages, along with descriptions, is accessible
at https://www.cnltx.de/known-packages.

"ere’s another package list on CTAN: https://ctan.org/topic/chemistry.

We’ll explore another exceptional package for drawing molecules in our upcoming recipe.

Drawing molecules
In the previous example, we practiced writing molecular formulas. Now, let’s delve into visualizing
them. We’ll create a visual representation of a cluster of atoms interconnected by various types of lines.

How to do it...

"is seemingly complex task becomes much simpler with the chemfig package developed by
Christian Tellechea. It o%ers a concise syntax for rendering molecular structures. Let’s create a few:

1. Start with any document class and load the chemfig package:

\documentclass{article}
\usepackage{chemfig}

https://texdoc.org/pkg/chemformula
https://texdoc.org/pkg/chemformula
https://www.cnltx.de/known-packages
https://ctan.org/topic/chemistry

Using LaTeX in Science and Technology346

2. Let’s organize molecules in a table. To do this, widen the rows slightly and initiate a tabular
environment with a column aligned to the right and another to the le$:

\renewcommand{\arraystretch}{1.5}
\begin{tabular}{rl}

3. For molecules, use the \chemfig command. Represent atoms as letters and depict a single
bond using a dash:

 Hydrogen: & \chemfig{H-H} \\

4. Depict a double bond using an equal sign:

 Oxygen: & \chemfig{O=O} \\

5. Use a tilde for a triple bond:

 Ethyne: & \chemfig{H-C~C-H}

6. End the table and add some space:

\end{tabular}
\qquad

7. Enclose branches within parentheses. Incorporate options using square brackets separated by
commas. "e !rst option indicates an angle. As we’ll see later, you can specify multiples of 45
degrees or arbitrary angles. "e second option signi!es a factor for interatomic distance. We’ll
set it to 0.8 for a more compact drawing. Use this for the methane structure:

Methane: \chemfig{[,0.8]C(-[2]H)(-[4]H)(-[6]H)-H}

8. Finish the document:

\end{document}

9. Compile and take a look at the drawings:

Figure 11.16 – Visual representations of molecules

Hydrogen: H H

Oxygen: O O

Ethyne: H C C H

Methane: C

H

H

H

H

Drawing molecules 347

How it works...

"e chemfig employs TikZ for its drawing functions, handling the bounding box automatically to
prevent overlap with other text. Experienced users have the #exibility to embed TikZ code if needed.

"e primary command is \chemfig, which requires an argument consisting of the following arguments:

• Letters for atoms

• Symbols for bonds, such as -, =, and ~ for simple, double and triple bonds, respectively

• Options for bonds in square brackets, separated by commas

• Branches of atoms and bonds within parentheses

"e most crucial option for bonds is the angle. It can be speci!ed as follows:

• An integer number representing a multiple of 45 degrees, such as [2] for 90 degrees

• An absolute angle in degrees, indicated by a double colon, such as [:60] for 60 degrees

• A relative angle in degrees, marked by two double colons, such as [::30] for 30 degrees in
relation to the previous bond

Positive and negative numbers are allowed.

A branch enclosed in parentheses allows you to open a path using an opening parenthesis, structure it
as shown previously, and conclude it using a closing parenthesis. "is returns you to the same position
from where the branch started.

Tip
In complex molecules, !nd the longest chain and draw it !rst. "en, add the branches. Use
relative angles for easy rotation of the entire molecule.

There’s more...

"ere are further features we should take a look at.

Drawing rings

Molecular rings are commonly represented as regular polygons. "ey can be drawn using this syntax:

atom*n*(code)

Here, n indicates the number of sides of the polygon, and the chemfig code within parentheses
depicts the structural arrangement within the ring.

Using LaTeX in Science and Technology348

For instance, the famous Benzene ring with all its atoms can be drawn this way:

\chemfig{C*6((-H)-C(-H)=C(-H)-C(-H)=C(-H)-C(-H)=)}

"is line gives us the following picture:

Figure 11.17 – The Benzene ring with all atoms

Naming molecules

Underneath a molecule, its name can be written using this syntax:

\chemname[distance]{\chemfig code}{name}

"e optional distance value de!nes the distance to the baseline of the molecule, defaulting to
1.5 ex. For instance, to place the name Benzene below the carbon skeleton of a Benzene ring, use
the following:

\chemname{\chemfig{*6(=-=-=-)}}{Benzene}

"is will result in the following drawing:

Figure 11.18 – The simplified Benzene ring with a label

C

H C

H

C

H

C

HC

H

C

H

Benzene

Drawing molecules 349

Using building blocks

In LaTeX, you can create new macros using the \newcommand syntax. "e chemfig package
provides a similar feature—you can create your own macros for recurring use as follows:

\definesubmol{name}{code}

Now, we can use this macro in formulas by writing !name as a shortcut. For instance, this de!nes a
molecular section with a carbon atom and two hydrogen atoms:

\definesubmol{C}{-C(-[2]H)(-[6]H)}

We can use the !C shortcut to draw the Pentane molecule:

\chemfig{H!C!C!C!C!C-H}

Remarkably, this concise code generates a considerably large molecule representation:

Figure 11.19 – The Pentane molecule

Applying style options

We can apply various style options to molecule drawings. "e \chemfig command takes one optional
argument in square brackets, which is a list of key=value options, and a mandatory argument for
the molecule code in curly braces. It looks like this:

\chemfig[key1=value1, key2=value2, ...]{code}

Here are two commonly used styles:

• chemfig style: "is is a list of options that apply to the entire tikzpicture environment
of the molecule, grouped in braces

• atom style: "is is a list of options for the atom nodes, again grouped in braces

For instance, applying these options would scale the entire picture and set the nodes to appear blue:

\chemfig[chemfig style = {scale=1.5, transform shape},
 atom style = {color=blue}]{H-C~C-H}

H C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

H

Using LaTeX in Science and Technology350

"ese options would result in thicker lines and a 15-degree rotation of the nodes:

\chemfig[chemfig style = {thick},
 atom style = {rotate=15}]{C(-[2]H)(-[4]H)(-[6]H)-H}

Here is the combined output from both lines:

Figure 11.20 – Customized molecule drawings

Note
You may come across an outdated syntax on the internet: in a previous version of the package,
the \chemfig command had two optional arguments, each enclosed in square brackets,
as follows:
\chemfig[options for tikzpicture][options for nodes]{code}

"e !rst argument’s options modi!ed the entire tikzpicture environment of the molecule,
and the second argument’s options adjusted the style of each node. Rewrite it using chemfig
and atom styles.

For more options and features, please read the package manual by inputting texdoc chemfig
using the command line or online at https://texdoc.org/pkg/chemfig.

Using ready-drawn carbohydrates

"ough chemfig simpli!es drawing, creating complex molecules can still be time-consuming,
especially when dealing with numerous structures when you write lecture notes or a thesis covering
carbohydrates. Fortunately, we don’t have to start from scratch every time.

"e carbohydrates package provides a lot of chemfig-drawn carbohydrates for you to use. It
includes trioses, tetroses, pentoses, and hexoses in various models: the Fischer (full and skeleton),
Haworth, and chain models. You can draw them as ring isomers and as chain isomers.

Let’s have a look at how easy it becomes, for example, with glucose:

\glucose[model=fischer, chain]\quad
\glucose[model={fischer=skeleton}, chain]

H C C H C

H

H

H

H

https://texdoc.org/pkg/chemfig

Drawing molecules 351

"is draws the Fischer models; the skeleton version doesn’t show the H and C atoms:

Figure 11.21 – Glucose molecules displayed using the Fischer models

Now let’s draw glucose but with other models:

\glucose[model=haworth, chain]\hfill
\glucose[model=haworth, ring]\hfill
\glucose[model=chain, ring]

We get the following drawings:

Figure 11.22 – Glucose molecules displayed using the Haworth and chain models

Already implemented are the following molecules:

• \glycerinaldehyde (triose)

• \erythrose, \threose (tetroses)

• \ribose, \arabinose, \xylose, \lyxose (pentoses)

• \allose, \altrose, \glucose, \mannose, \gulose, \idose, \galactose,
\talose (hexoses)

C

OH

C OHH

COH H

C OHH

C OHH

C OHH

H

O

OH

OH

OH

OH

OH

OH

OH

O

OH

OH

OH

OH

O

OH

OH

OH

OH

OH

O

OHOH

OH

OH

Using LaTeX in Science and Technology352

"e package manual tells you all the details about options and usage. You can open it using the command
line by running the command texdoc chemformula or online at https://texdoc.org/
pkg/carbohydrates.

Representing atoms
Now that we’ve mastered drawing molecules, shall we explore further? Can we draw atoms? Absolutely!

How to do it...

We’ll utilize a package named a$er the renowned physicist Niels Bohr and written by Clemens
Niederberger—the bohr package. Follow these steps:

1. Start with a document class, load the bohr package, and begin with the document:

\documentclass{article}
\usepackage{bohr}
\begin{document}

2. Use the command \bohr{number of electrons}{element name}, to draw the
Fluorine atom:

\bohr{10}{F}

3. For the next drawing, adjust the nucleus radius as follows:

\setbohr{nucleus-radius=1.5em}

4. With this adjustment, there’s more space at the center for an ion symbol. In this instance,
employ the \bohr command with an optional argument specifying the number of electron
shells within square brackets. "is will illustrate a sodium ion:

\bohr[3]{10}{$\mathrm{Na^+}$}

5. "at’s all for now! Conclude the document:

\end{document}

6. Compile to see the result:

https://texdoc.org/pkg/carbohydrates
https://texdoc.org/pkg/carbohydrates

Drawing molecular orbital diagrams and atomic orbitals 353

Figure 11.23 – Atoms and electrons

How it works...

It was pretty straightforward. However, I wanted to demonstrate how one can write about science
e%ortlessly today.

A$er loading the package, all we required was this single command:

\bohr[number of shells]{number of electrons}{element name}

"e \setbohr command provides a key=value interface for further !ne-tuning. We’ll skip over
the extensive list of optional parameters to avoid overwhelming those who aren’t working with physics
or chemistry. You can read all customization details in the manual, which you can open by running
texdoc bohr via the command line or online at https://texdoc.org/pkg/bohr.

Drawing molecular orbital diagrams and atomic orbitals
A molecular orbital (MO) diagram describes chemical bonding in molecules and displays energy
levels. First, we will create such an MO diagram, and then we will draw atomic orbitals with a more
visual approach.

How to do it...

We will use the tikzorbital package written by Germain Salvato-Vallverdu. "ese are the steps:

1. Start with any document class; we choose the standalone class here. "en load the
tikzorbital package that implicitly loads TikZ:

\documentclass[border=10pt]{standalone}
\usepackage{tikzorbital}

FF Na+Na+

https://texdoc.org/pkg/bohr

Using LaTeX in Science and Technology354

2. Load the positioning and quotes TikZ libraries and begin the document:

\usetikzlibrary{positioning,quotes}
\begin{document}

3. Open a tikzpicture environment, and de!ne a custom ^ style to get small, center-aligned
sans-serif text where we want it:

\begin{tikzpicture}[note/.style =
 {align = center, font = \sffamily\scriptsize}]

4. Use the \drawLevel command to draw an energy level line, that we call 1s1, with an electron
visualized in the upward direction:

 \drawLevel[elec = up]{1s1}

5. Continue using drawLevel commands, now with a positioning coordinate and a width option:

 \drawLevel[elec = up, pos = {(5,0)}]{1s2}
 \drawLevel[elec = pair, pos = {(2,-2)},
 width = 2]{sigma}
 \drawLevel[pos = {(2,2)}, width = 2]{sigmastar}

6. Draw a dashed line between the various right and le$ anchors of the energy level lines:

 \draw[dashed]
 (right 1s1) -- (left sigma)
 (right 1s1) -- (left sigmastar)
 (left 1s2) -- (right sigmastar)
 (left 1s2) -- (right sigma);

7. Draw labels for the energy levels:

 \node[left] at (left 1s1) {{$1s_1$}};
 \node[right] at (right 1s2) {{$1s_2$}};
 \node[right] at (right sigma) {σ};
 \node[right] at (right sigmastar) {σ^*};

8. Print some text nodes for explanation using our note style:

 \node[below = 0.4cm of middle 1s1, note]
 {Atomic\\Orbital};
 \node[below = 0.4cm of middle 1s2, note]
 {Atomic\\Orbital};
 \node[below = 0.4cm of middle sigma, note]
 {Molecular Orbital};

Drawing molecular orbital diagrams and atomic orbitals 355

9. Finish the drawing with an arrow indicating the energy level:

 \draw[very thick, -stealth] (-1.5,-2.5)
 to["Energy", note, sloped] (-1.5,2.5);

10. End the tikzpicture environment and the document:

\end{tikzpicture}
\end{document}

11. Compile and look at the outcome:

Figure 11.24 – A molecular orbital diagram

How it works...

"e \drawLevel command is the most relevant here, as it draws a thick line with arrows representing
the spin of the electrons at that level. It understands the following options:

• elec: "is de!nes the number of electrons with their direction. "e value can be up, down,
updown, or pair, with the last two both having the same e%ect of displaying two electrons
in the up and down directions, as seen in Figure 11.24.

• pos: "is is the position of the le$ side of the energy level as (x,y) coordinate, enclosed in curly
braces to ensure the correct parsing. If you omit it, (0,0) will be used.

• width: "is is the width of the energy level, which is 1 by default.

Some style options allow customizing color, thickness, arrows, and line style, as listed in the manual.
You can open the manual by running texdoc tikzorbital at the command prompt or
visiting https://texdoc.org/pkg/tikzorbital.

1s1 1s2

σ

σ∗

Atomic
Orbital

Atomic
Orbital

Molecular Orbital

E
n
er
gy

https://texdoc.org/pkg/tikzorbital

Using LaTeX in Science and Technology356

"e \drawLevel command generates anchors to the left, right, and middle of it that we
can use for drawing.

Apart from the \drawLevel command, we used TikZ commands for drawing lines and nodes; you
can read more about the TikZ commands in my book, LaTeX Graphics with TikZ, or start at https://
tikz.org.

A good starting point to learn more about MO diagrams is https://en.wikipedia.org/
wiki/Molecular_orbital_diagram. I wrote this example in LaTeX to represent one of the
!gures at https://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html,
where you can also !nd more MO diagrams.

There’s more...

"e tikzorbital package provides the \orbital command to visualize atomic orbitals. Here’s
a quick example:

\begin{tikzpicture}
 \orbital{dyz}
 \orbital[pos = {(2.4,0)}]{dx2y2}
 \orbital[pos = {(4.5,0)}]{dz2}
\end{tikzpicture}

"is gives us the following picture:

Figure 11.25 – Atomic orbitals

Furthermore, the package provides an \atom command that can even be used to build molecule
drawings. Here’s an example that displays the diatomic molecule hydrogen #uoride (HF):

\begin{tikzpicture}
 \atom[name=F, color=red]{
 blue/270/south/2, blue/180/west/2,
 blue/90/north/2, blue/0/east/1}
 \atom[name=H, color=gray, pos={(1.5,0)},
 scale=0.7]{gray/180/west/1}
\end{tikzpicture}

https://tikz.org
https://tikz.org
https://en.wikipedia.org/wiki/Molecular_orbital_diagram
https://en.wikipedia.org/wiki/Molecular_orbital_diagram
https://www.ch.ic.ac.uk/vchemlib/course/mo_theory/main.html

Printing a customized periodic table of elements 357

"e output of this code is the following:

Figure 11.26 – The hydrogen fluoride molecule

"is shall quickly demonstrate what we can achieve using a few commands of the tikzorbital
package. If you are interested, you can take a deep dive into the package manual, which also provides
other examples.

Printing a customized periodic table of elements
In the previous recipes, we read a lot about atoms and elements. Do you remember that huge poster
of the periodic table of elements in the chemistry room at your school? Let’s make it ourselves!

How to do it...

We will use the pgf-PeriodicTable package written by Hugo Gomes. Take the following steps:

1. Start with any document class:

\documentclass[border=10pt]{standalone}

2. Load the pgf-PeriodicTable package:

\usepackage{pgf-PeriodicTable}

3. Begin the document:

\begin{document}

4. Use the \pgfPT command:

\pgfPT

5. End the document:

\end{document}

F H

Using LaTeX in Science and Technology358

6. Compile and look at the result:

Figure 11.27 – The periodic table of elements

How it works...

"at was too easy. "e \pgfPT command understands many options, and you can customize a
lot, including the colors. Let’s leave a detailed reference to the package manual that you can !nd
at https://texdoc.org/pkg/pgf-PeriodicTable.

Let’s use that command to print, for example, the IUPAC groups 1 and 2 (also known as the lithium
group and the beryllium group), periods 2 and 3, as follows:

\documentclass[border=10pt]{standalone}
\usepackage{pgf-PeriodicTable}
\usepgfPTlibrary{colorschemes}
\pgfPTGroupColors{example}{G1=red!90!black, G2=orange}
\begin{document}
\pgfPT[show title = false, back color scheme = example,
 legend box = {draw=blue!50, fill=blue!20},
 show extra legend,
 Z list = {1,3,4,11,12}]

57–71

lanthanoids

89–103

actinoids

1

H
hydrogen

1.008

2

He
helium
4.0026

3

Li
lithium
6.94

4

Be
beryllium
9.0122

5

B
boron
10.81

6

C
carbon
12.011

7

N
nitrogen
14.007

8

O
oxygen
15.999

9

F
fluorine
18.998

10

Ne
neon
20.18

11

Na
sodium
22.99

12

Mg
magnesium

24.305

13

Al
aluminium

26.982

14

Si
silicon
28.085

15

P
phosphorus

30.974

16

S
sulfur
32.06

17

Cl
chlorine
35.45

18

Ar
argon
39.95

19

K
potassium

39.098

20

Ca
calcium
40.078

21

Sc
scandium

44.956

22

Ti
titanium
47.867

23

V
vanadium

50.942

24

Cr
chromium

51.996

25

Mn
manganese

54.938

26

Fe
iron

55.845

27

Co
cobalt
58.933

28

Ni
nickel
58.693

29

Cu
copper
63.546

30

Zn
zinc

65.38

31

Ga
gallium
69.723

32

Ge
germanium

72.63

33

As
arsenic
74.922

34

Se
selenium
78.971

35

Br
bromine
79.904

36

Kr
krypton
83.798

37

Rb
rubidium
85.468

38

Sr
strontium

87.62

39

Y
yttrium
88.906

40

Zr
zirconium

91.224

41

Nb
niobium
92.906

42

Mo
molybdenum

95.95

43

Tc
technetium

[98]

44

Ru
ruthenium

101.07

45

Rh
rhodium
102.91

46

Pd
palladium

106.42

47

Ag
silver

107.87

48

Cd
cadmium
112.41

49

In
indium
114.82

50

Sn
tin

118.71

51

Sb
antimony
121.76

52

Te
tellurium

127.6

53

I
iodine
126.9

54

Xe
xenon
131.29

55

Cs
caesium
132.91

56

Ba
barium
137.33

57

La
lanthanum

138.91

58

Ce
cerium
140.12

59

Pr
praseodymium

140.91

60

Nd
neodymium

144.24

61

Pm
promethium

[145]

62

Sm
samarium

150.36

63

Eu
europium
151.96

64

Gd
gadolinium

157.25

65

Tb
terbium
158.93

66

Dy
dysprosium

162.5

67

Ho
holmium
164.93

68

Er
erbium
167.26

69

Tm
thulium
168.93

70

Yb
ytterbium
173.05

71

Lu
lutetium
174.97

72

Hf
hafnium
178.49

73

Ta
tantalum
180.95

74

W
tungsten
183.84

75

Re
rhenium
186.21

76

Os
osmium
190.23

77

Ir
iridium
192.22

78

Pt
platinum
195.08

79

Au
gold

196.97

80

Hg
mercury
200.59

81

Tl
thallium
204.38

82

Pb
lead

207.2

83

Bi
bismuth
208.98

84

Po
polonium

[209]

85

At
astatine

[210]

86

Rn
radon
[222]

87

Fr
francium

[223]

88

Ra
radium
[226]

89

Ac
actinium

[227]

90

Th
thorium
232.04

91

Pa
protactinium

231.04

92

U
uranium
238.03

93

Np
neptunium

[237]

94

Pu
plutonium

[244]

95

Am
americium

[243]

96

Cm
curium
[247]

97

Bk
berkelium

[247]

98

Cf
californium

[251]

99

Es
einsteinium

[252]

100

Fm
fermium

[257]

101

Md
mendelevium

[258]

102

No
nobelium

[259]

103

Lr
lawrencium

[266]

104

Rf
rutherfordium

[267]

105

Db
dubnium

[268]

106

Sg
seaborgium

[269]

107

Bh
bohrium

[270]

108

Hs
hassium

[270]

109

Mt
meitnerium

[278]

110

Ds
darmstadtium

[281]

111

Rg
roentgenium

[282]

112

Cn
copernicium

[285]

113

Nh
nihonium

[286]

114

Fl
flerovium

[289]

115

Mc
moscovium

[290]

116

Lv
livermorium

[293]

117

Ts
tennessine

[294]

118

Og
oganesson

[294]

1

2

3

4

5

6

7

6

7

1

2

4 5 6 7 8 9 10 11 12

13 14 15 16 17

18

3

Periodic Table of Elements

Z

CS solid
liquid
gaseous
syntheticN

Ar

Ra

Z: Atomic Number
Ra: Radioactive
CS: Chemical Symbol
N: Name
Ar: Relative Atomic Mass

https://texdoc.org/pkg/pgf-PeriodicTable

Drawing electrical circuits 359

\end{document}

"is gives us the following output:

Figure 11.28 – A customized part of the periodic table of elements

Drawing electrical circuits
Technical documents in the domain of electrical engineering o$en comprise numerous formulas
and many drawings. LaTeX excels in math typesetting, making it a top choice for authors. As we
explored in a prior section of this chapter, the siunitx package makes representing electrical units
in compliance with standards easy.

Drawing electrical circuits directly in LaTeX has various bene!ts. Unlike importing external images,
drawings done within LaTeX can have annotations that precisely match the text regarding fonts and
styles for perfect consistency.

"erefore, this section focuses on generating circuit diagrams. We aim to design a circuit featuring
typical electrical components such as resistors, diodes, capacitors, bulbs, and more.

Note
"e drawing in this recipe serves as a sample, and attempting to replicate it with actual
components at home is not advised.

1

H
hydrogen

1.008
3

Li
lithium
6.94

4

Be
beryllium
9.0122

11

Na
sodium
22.99

12

Mg
magnesium

24.305

1

2

3

1

2

Z

CS solid
liquid
gaseous
syntheticN

Ar

Ra

Z: Atomic Number
Ra: Radioactive
CS: Chemical Symbol
N: Name
Ar: Relative Atomic Mass

Using LaTeX in Science and Technology360

How to do it...

"e TikZ graphics package provides several libraries for drawing electrical and logical circuits. We’ll
select one that adheres to the IEC standard. "e code is a bit long, so it’s recommended to download
it with the code bundle from the publisher’s website or from https://latex-cookbook.net/
chapter-11. Here’s a step-by-step guide:

1. Start with a document class. For this illustration, choose the standalone class, which
generates a PDF !le matching the size of our drawing. "en, load the tikz package:

\documentclass[border=10pt]{standalone}
\usepackage{tikz}

2. Load the circuits.ee.IEC TikZ library, symbols complying with the IEC norm:

\usetikzlibrary{circuits.ee.IEC}

3. Begin the document:

\begin{document}

4. Open a tikzpicture environment and de!ne the following options:

 � "e desired style

 � "e x and y unit dimensions

 � An annotation style for a smaller font size

 � Graphic symbol settings, if desired

 � A switch contact style

Here’s the command with selected sample values:
\begin{tikzpicture}[
 circuit ee IEC,
 x = 3cm, y = 2cm,
 every info/.style = {font = \scriptsize},
 set diode graphic = var diode IEC graphic,
 set make contact graphic =
 var make contact IEC graphic,
]

5. Start by drawing six contact points in two rows, three per row. Utilize a \foreach loop
for convenience:

 \foreach \i in {1,...,3} {
 \node [contact] (lower contact \i) at (\i,0) {};

https://latex-cookbook.net/chapter-11
https://latex-cookbook.net/chapter-11

Drawing electrical circuits 361

 \node [contact] (upper contact \i) at (\i,1) {};
 }

6. As we de!ned the contacts’ names, given in parentheses, we can refer to them using upper
contact 1, lower contact 3, and similar. So, we will connect the upper-le$ contact
and the lower-le$ contact by a line with a diode in the middle:

 \draw (upper contact 1) to [diode]
 (lower contact 1);

7. We saw that we stated the component name as an option for the path. We can do the same for
a capacitor:

 \draw (lower contact 2) to [capacitor]
 (upper contact 2);

8. "e component keys can have options. So, we draw a line with a resistor, which has an electrical
resistance of 6 ohm, with that value as annotation:

 \draw (upper contact 1) to [resistor = {ohm = 6}]
 (upper contact 2);

9. Annotations can be di%erent. Here, we use a symbol for an adjustable resistor:

 \draw (lower contact 2) to [resistor = {adjustable}]
 (lower contact 3);

10. We can have even more options. Useful options are near start and near end for positioning
two components at a line:

 \draw (lower contact 1) to [
 voltage source = {near start,
 direction info = {volt = 12}},
 inductor = {near end}]
 (lower contact 2);

11. Do it similarly for an open contact and a battery with some text as annotation:

 \draw (upper contact 2) to
 [make contact = {near start},
 battery = {near end,
 info = {loaded}}]
 (upper contact 3);

Using LaTeX in Science and Technology362

12. Let’s !nish with a bulb. We will make it a bit bigger than the default:

 \draw (lower contact 3) to
 [bulb = {minimum height = 0.6cm}]
 (upper contact 3);

13. End the tikzpicture environment and the document:

\end{tikzpicture}
\end{document}

14. Compile and have a look at the circuit:

Figure 11.29 – A fictional electronic circuit

How it works...

"e TikZ manual references the circuit libraries, showcasing symbols and their associated options. We
can only outline some selected details of the breadth of content here. But here’s a stepwise summary
of our approach:

1. Load the necessary library and de!ning styles, either as an option to the tikzpicture
environment or globally through the \tikzset command.

2. Position contacts and other nodes, which can be done using pure coordinates combined with
a \foreach loop or with the aid of the positioning TikZ library. Another option would
be utilizing a TikZ matrix of nodes.

3. Draw lines between the nodes using to paths, which take components as options.

Components can have further options, such as for additional information (info above), positioning
(near start or near end), or color and size.

In our example, we opted for verbose naming and ample spacing to enhance code readability, a practice
particularly bene!cial in complex drawings.

6Ω

12V

loaded

See also 363

Access the TikZ manual by entering texdoc tikz via the command line or read it online by visiting
https://texdoc.org/pkg/tikz. "e relevant sections are in a Circuit Libraries section in
the Libraries part. You can also go directly to https://tikz.dev/library-circuits to
read that section online.

See also
While scienti!c and technical writing is o$en based on mathematical writing, there are distinct !eld-
speci!c notations, conventions, and requisites.

Developers and power users in the LaTeX community created numerous LaTeX packages and classes
dedicated to a certain scienti!c !eld. "e CTAN catalog is a good place to explore what’s out there.
Visit the CTAN topic categories; here are a few examples:

• https://ctan.org/topic/physics

• https://ctan.org/topic/biology

• https://ctan.org/topic/chemistry

• https://ctan.org/topic/astronomy

• https://ctan.org/topic/electronic

You can also visit https://ctan.org/topics/cloud to !nd the !eld of science you are
looking for.

LaTeX’s capability to generate scienti!c illustrations is fascinating. "ere’s an abundance of examples
available, and I curate a TikZ gallery featuring diverse drawings alongside di%erent scienti!c disciplines.
"e gallery is conveniently organized by scienti!c !eld, allowing you to explore various graphics
created using LaTeX. For example:

• https://texample.net/tikz/examples/area/physics/ showcases approximately
50 examples, encompassing 3D atom clusters, energy level diagrams, optics, mechanics,
astronomy, and more

• https://texample.net/tikz/examples/area/chemistry/ presents 15
illustrations for chemistry, including a periodic table of elements

• https://texample.net/tikz/examples/area/computer-science/ contains
around 40 drawings covering networks, database topics, protocols, algorithms, and related topics

Even more drawings with their code can be found at https://tikz.net. Over 500 TikZ examples
are available to explore by topic, spanning physics, engineering, computing, mathematics, and beyond.

"ese curated resources o%er a rich repository of LaTeX-generated graphics across various scienti!c
domains. Take their source code as a basis for your own drawings.

https://texdoc.org/pkg/tikz
https://tikz.dev/library-circuits
https://ctan.org/topic/physics
https://ctan.org/topic/biology
https://ctan.org/topic/chemistry
https://ctan.org/topic/astronomy
https://ctan.org/topic/electronic
https://ctan.org/topics/cloud
https://texample.net/tikz/examples/area/physics/
https://texample.net/tikz/examples/area/chemistry/
https://texample.net/tikz/examples/area/computer-science/
https://tikz.net

