Here are the Code examples of of this chapter. You can compile them online right on this web page by pressing the Typeset / Compile button. You can also edit them for testing, and compile again.
For a better view with the online compiler, I sometimes use \documentclass[border=10pt]{standalone} instead of \documentclass{article}. Instead of having a big letter/A4 page, the standalone class crops the paper to see just the visible text without an empty rest of a page.
Any question about a code example? Post it on LaTeX.org, I will answer. As forum admin I read every single question there. (profile link).
\documentclass{article} \pagestyle{empty} \begin{document} \section*{The golden ratio} The symbol for the golden ratio is the Greek letter \( \varphi \). Its value is the positive solution of \( x^2 - x - 1 = 0 \). It can be calculated to: \[ \varphi = \frac{1 + \sqrt{5}}{2} = 1.618 \ldots \] \end{document}
\documentclass{article} \pagestyle{empty} \begin{document} \[ x^{n_1} \neq x^n_1 \] \[ {x^2}^3 = x^{2^3} \] \end{document}
\documentclass{article} \pagestyle{empty} \usepackage{mathtools} \mathtoolsset{showonlyrefs} \begin{document} \begin{gather} y = x^2 + 1 \label{xx}\\ z = 0 \end{gather} See \eqref{xx}. \end{document}
\documentclass{article} \usepackage{dsfont} \begin{document} \[ \lim_{n\to\infty} \sup_{x\in\mathds{R}} f_n(x^2) < n \Big(\sum_{x\in\mathds{R}, n\in\mathds{N}} \big| f_n(x^2) \big| \Big) \] \end{document}
\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{thmtools} \newtheorem{thm}{Theorem} \newtheorem{lem}[thm]{Lemma} \theoremstyle{definition} \newtheorem{dfn}[thm]{Definition} \theoremstyle{remark} \newtheorem*{note}{Note} \pagestyle{empty} \begin{document} \listoftheorems \newpage \begin{dfn} The longest side of a triangle with a right angle is called the \emph{hypotenuse}. \end{dfn} \begin{note} The other sides are called \emph{catheti}, or \emph{legs}. \end{note} \begin{thm}[Pythagoras] \label{pythagoras} In any right triangle, the square of the hypotenuse equals the sum of the squares of the other sides. \end{thm} \begin{proof} The proof has been given in Euclid's Elements, Book 1, Proposition 47. Refer to it for details. The converse is also true, see lemma \ref{converse}. \end{proof} \begin{lem} \label{converse} For any three positive numbers \(x\), \(y\), and \(z\) with \(x^2 + y^2 = z^2\), there is a triangle with side lengths \(x\), \(y\) and \(z\). Such triangle has a right angle, and the hypotenuse has the length \(z\). \end{lem} \begin{note} This is the converse of theorem \ref{pythagoras}. \end{note} \end{document}
\documentclass[12pt]{beamer} \usefonttheme[onlymath]{serif} \usepackage{breqn} \begin{document} \begin{frame} \begin{dmath*} \left( \frac{f}{g} \right)^\prime(x) = \lim_{h \rightarrow 0} \left( \frac{1}{ g(x+h) g(x) } \right) \left[ \frac{ f(x+h) - f(x) }{h} g(x) -\frac{ g(x+h) - g(x) }{h} f(x) \right] = \frac{f^\prime(x)g(x)-f(x)g^\prime(x)}{g^2(x)} \end{dmath*} \end{frame} \end{document}
\documentclass{article} \usepackage{dsfont} \usepackage{mathtools} \begin{document} \[ \adjustlimits\lim_{n\to\infty} \sup_{x\in\mathds{R}} f_n(\cramped{x^2}) < n \Big( \smashoperator{\sum_{x\in\mathds{R}, n\in\mathds{N}}} \big\lvert f_n(\cramped{x^2}) \big\rvert \Big) \] \end{document}
\\documentclass[border=10pt]{standalone} \usepackage{tikz-cd} \usepackage{amsmath} \DeclareMathOperator{\im}{im} \pagestyle{empty} \begin{document} \begin{tikzcd} G \arrow[r, "\varphi"] \arrow[d, twoheadrightarrow, "\pi" left] & \im \varphi \\ G/\ker \varphi \arrow[ru, hook, dashed, "\tilde{\varphi}" below] & \\ \end{tikzcd} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{tikz-cd} \usepackage{amsmath} \DeclareMathOperator{\im}{im} \pagestyle{empty} \begin{document} \begin{tikzcd} G \arrow[r, "\varphi"] \arrow[d, "\pi" left] & \im \varphi \\ G/\ker \varphi \arrow[ru, "\tilde{\varphi}" below] \end{tikzcd} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{amsmath} \usepackage{tikz} \usetikzlibrary{fit} \newcommand{\overlay}[2][]{\tikz[overlay, remember picture, #1]{#2}} \tikzset{ highlighted/.style = { draw, thick, rectangle, rounded corners, inner sep = 0pt, fill = red!15, fill opacity = 0.5 } } \newcommand{\highlight}[1]{% \overlay{ \node [fit = (left.north west) (right.south east), highlighted] (#1) {}; } } \newcommand{\flag}[2]{\overlay[baseline=(#1.base)] {\node (#1) {$#2$};}} \begin{document} \[ M = \begin{pmatrix} \flag{left}{1} & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & \flag{before}{12} & \flag{right}{13} & 14 & 15 \\ 16 & 17 & 18 & 19 & 20 \end{pmatrix} \highlight{N} \qquad M^T = \begin{pmatrix} \flag{left}{1} & 6 & 11 & 16 \\ 2 & 7 & \flag{after}{12} & 17 \\ 3 & 8 & \flag{right}{13} & 18 \\ 4 & 9 & 14 & 19 \\ 5 & 10 & 15 & 20 \end{pmatrix} \highlight{NT} \] \overlay{ \draw[->, thick, red, dotted] (before) -- (after); \draw[->, thick, red, dashed] (N) -- (NT) node [pos=0.68, above] {Transpose}; \node[above of = N ] { $N$ }; \node[above of = NT] { $N^T$ }; } \end{document}
\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \newtheorem{thm}{Theorem} \newtheorem{lem}{Lemma} \theoremstyle{definition} \newtheorem{dfn}{Definition} \theoremstyle{remark} \newtheorem*{note}{Note} \begin{document} \begin{dfn} The longest side of a triangle with a right angle is called the \emph{hypotenuse}. \end{dfn} \begin{note} The other sides are called \emph{catheti}, or \emph{legs}. \end{note} \begin{thm}[Pythagoras] \label{pythagoras} In any right triangle, the square of the hypotenuse equals the sum of the squares of the other sides. \end{thm} \begin{proof} The proof has been given in Euclid's Elements, Book 1, Proposition 47. Refer to it for details. The converse is also true, see lemma \ref{converse}. \end{proof} \begin{lem} \label{converse} For any three positive numbers \(x\), \(y\), and \(z\) with \(x^2 + y^2 = z^2\), there is a triangle with side lengths \(x\), \(y\) and \(z\). Such triangle has a right angle, and the hypotenuse has the length \(z\). \end{lem} \begin{note} This is the converse of theorem \ref{pythagoras}. \end{note} \end{document}
\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{amsthm} \newtheorem{thm}{Theorem} \newtheorem{lem}[thm]{Lemma} \theoremstyle{definition} \newtheorem{dfn}[thm]{Definition} \theoremstyle{remark} \newtheorem*{note}{Note} \begin{document} \begin{dfn} The longest side of a triangle with a right angle is called the \emph{hypotenuse}. \end{dfn} \begin{note} The other sides are called \emph{catheti}, or \emph{legs}. \end{note} \begin{thm}[Pythagoras] \label{pythagoras} In any right triangle, the square of the hypotenuse equals the sum of the squares of the other sides. \end{thm} \begin{proof} The proof has been given in Euclid's Elements, Book 1, Proposition 47. Refer to it for details. The converse is also true, see lemma \ref{converse}. \end{proof} \begin{lem} \label{converse} For any three positive numbers \(x\), \(y\), and \(z\) with \(x^2 + y^2 = z^2\), there is a triangle with side lengths \(x\), \(y\) and \(z\). Such triangle has a right angle, and the hypotenuse has the length \(z\). \end{lem} \begin{note} This is the converse of theorem \ref{pythagoras}. \end{note} \end{document}
\documentclass{article} \usepackage{amsmath} \usepackage[amsmath,amsthm,thmmarks]{ntheorem} \newtheorem{thm}{Theorem} \newtheorem{lem}{Lemma} \theoremstyle{definition} \newtheorem{dfn}{Definition} \theoremstyle{remark} \newtheorem{note}{Note} \begin{document} \begin{dfn} The longest side of a triangle with a right angle is called the \emph{hypotenuse}. \end{dfn} \begin{note} The other sides are called \emph{catheti}, or \emph{legs}. \end{note} \begin{thm}[Pythagoras] \label{pythagoras} In any right triangle, the square of the hypotenuse equals the sum of the squares of the other sides. \end{thm} \begin{proof} The proof has been given in Euclid's Elements, Book 1, Proposition 47. Refer to it for details. The converse is also true, see lemma \ref{converse}. \end{proof} \begin{lem} \label{converse} For any three positive numbers \(x\), \(y\), and \(z\) with \(x^2 + y^2 = z^2\), there is a triangle with side lengths \(x\), \(y\) and \(z\). Such triangle has a right angle, and the hypotenuse has the length \(z\). \end{lem} \begin{note} This is the converse of theorem \ref{pythagoras}. \end{note} \end{document}
\documentclass{article} \usepackage{amsmath} \usepackage{amsthm} \usepackage{thmtools} \usepackage{xcolor} \declaretheorem[shaded={bgcolor=red!15}]{Theorem} \declaretheorem[thmbox=L]{Definition} \begin{document} \begin{Definition} The longest side of a triangle with a right angle is called the \emph{hypotenuse}. \end{Definition} \begin{Theorem}[Pythagoras] \label{pythagoras} In any right triangle, the square of the hypotenuse equals the sum of the squares of the other sides. \end{Theorem} \end{document}
\documentclass{article} \usepackage{tikz} \usetikzlibrary{matrix} \usepackage{amsmath} \DeclareMathOperator{\im}{im} \begin{document} \begin{tikzpicture} \matrix (m) [ matrix of math nodes, row sep = 3em, column sep = 4em ] { G & \im \varphi \\ G/\ker \varphi & \\ }; \path[-stealth] (m-1-1) edge node [left] {$\pi$} (m-2-1) (m-1-1.east |- m-1-2) edge node [above] {$\varphi$} (m-1-2) (m-2-1) edge node [below] {$\tilde{\varphi}$} (m-1-2); \end{tikzpicture} \end{document}
\documentclass{article} \usepackage{tikz} \usetikzlibrary{matrix,arrows.meta} \usepackage{amsmath} \DeclareMathOperator{\im}{im} \begin{document} \begin{tikzpicture} \matrix (m) [ matrix of math nodes, row sep = 3em, column sep = 4em ] { G & \im \varphi \\ G/\ker \varphi & \\ }; \path (m-1-1) edge [->>] node [left] {$\pi$} (m-2-1) (m-1-1.east |- m-1-2) edge [->] node [above] {$\varphi$} (m-1-2) (m-2-1.east) edge [{Hooks[right,length=0.8ex]}->, dashed] node [below] {$\tilde{\varphi}$} (m-1-2); \end{tikzpicture} \end{document}
\documentclass{article} \usepackage{tikz} \usetikzlibrary{matrix,calc} \begin{document} \begin{tikzpicture}[-stealth, label/.style = { font=\footnotesize }] \matrix (m) [ matrix of math nodes, row sep = 4em, column sep = 4em ] { A_0 & A_1 & A_2 & A_3 & A_4 \\ B_0 & B_1 & B_2 & B_3 & B_4 \\ }; \foreach \i in {1,...,4} { \path let \n1 = { int(\i+1) } in (m-1-\i) edge node [above, label] {$f_\i$} (m-1-\n1) (m-2-\i) edge node [below, label] {$f^\prime_\i$} (m-2-\n1) (m-1-\i) edge node [left, label] {$g_\i$} (m-2-\i); } \path (m-1-5) edge node [left, label] {$g_5$} (m-2-5); \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{pgfplots} \begin{document} \begin{tikzpicture} \begin{axis} [axis lines=center] \addplot [domain=-3:3, smooth, thick] { x^3 - 5*x }; \end{axis} \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{pgfplots} \begin{document} \begin{tikzpicture} \begin{axis} [grid, xtick = {-360,-270,...,360}] \addplot [domain=-360:360, samples=100, thick] { sin(x) }; \end{axis} \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{pgfplots} \usepgfplotslibrary{polar} \begin{document} \begin{tikzpicture} \begin{polaraxis}[hide axis] \addplot[domain=0:180,smooth] {sin(x)}; \end{polaraxis} \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{pgfplots} \usepgfplotslibrary{polar} \begin{document} \begin{tikzpicture} \begin{polaraxis} \addplot[domain=0:360,samples=300] {sin(6*x)}; \end{polaraxis} \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{pgfplots} \begin{document} \begin{tikzpicture} \begin{axis} [ title = {$f(x,y) = \sin(x)\sin(y)$}, xtick = {0,90,...,360}, ytick = {90,180,...,360}, xlabel = $x$, ylabel = $y$, ticklabel style = {font = \scriptsize}, grid ] \addplot3 [surf, domain=0:360, samples=60] { sin(x)*sin(y) }; \end{axis} \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{pgfplots} \usepgfplotslibrary{shift} \begin{document} \begin{tikzpicture} \begin{axis} [shift3d] \addplot3 [surf, colormap/hot2, domain = -2:2, samples = 50] { x/exp(x^2+y^2) }; \end{axis} \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{tkz-euclide} \begin{document} \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(4,1){B} \tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{D} \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C,D) \tkzLabelPoints[below left](A) \tkzLabelPoints(B,D) \tkzLabelPoint[above](C){$C$} \tkzDrawCircle[dotted](A,B) \tkzDrawCircle[dotted](B,A) \tkzCompass[color=red, very thick](A,C) \tkzCompass[color=red, very thick](B,C) \tkzCompass[color=red, very thick](A,D) \tkzCompass[color=red, very thick](B,D) \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{tkz-euclide} \begin{document} \begin{tikzpicture} \tkzDefPoint(0,0){A} \tkzDefPoint(4,1){B} \tkzInterCC(A,B)(B,A) \tkzGetPoints{C}{D} \tkzDrawPolygon(A,B,C) \tkzDrawPoints(A,B,C,D) \tkzLabelPoints[below left](A) \tkzLabelPoints(B,D) \tkzLabelPoint[above](C){$C$} \tkzDrawCircle[dotted](A,B) \tkzDrawCircle[dotted](B,A) \tkzCompass[color=red, very thick](A,C) \tkzCompass[color=red, very thick](B,C) \tkzCompass[color=red, very thick](A,D) \tkzCompass[color=red, very thick](B,D) \tkzDrawArc[fill=blue!10,thick](A,B)(C) \tkzDrawArc[fill=blue!10,thick](B,C)(A) \tkzDrawArc[fill=blue!10,thick](C,A)(B) \tkzInterLC(A,B)(B,A) \tkzGetPoints{F}{E} \tkzDrawPoints(E) \tkzLabelPoints(E) \tkzDrawPolygon(A,E,D) \tkzMarkAngles[fill=yellow,opacity=0.5](D,A,E A,E,D) \tkzMarkRightAngle[size=0.65,fill=red,opacity=0.5](A,D,E) \tkzLabelAngle[pos=0.7](D,A,E){$\alpha$} \tkzLabelAngle[pos=0.8](A,E,D){$\beta$} \tkzLabelAngle[pos=0.5,xshift=-1.4mm](A,D,D){$90^\circ$} \tkzLabelSegment[below=0.6cm,align=center,font=\small](A,B){Reuleaux\\triangle} \tkzLabelSegment[above right,sloped,font=\small](A,E){hypotenuse} \tkzLabelSegment[below,sloped,font=\small](D,E){opposite} \tkzLabelSegment[below,sloped,font=\small](A,D){adjacent} \tkzLabelSegment[below right=4cm,font=\small](A,E){Thales circle} \end{tikzpicture} \end{document}
\documentclass[border=10pt]{standalone} \usepackage{tkz-euclide} \begin{document} \begin{tikzpicture} \tkzDefPoints{0/0/A, 5/0/B, 1/4/C} \tkzDefCircle[in](A,B,C) \tkzGetPoint{M} \tkzGetLength{r} \tkzDefCircle[circum](A,B,C) \tkzGetPoint{N} \tkzGetLength{R} \tkzDefPointBy[projection=onto A--B](M) \tkzGetPoint{a} \tkzDefPointBy[projection=onto B--C](M) \tkzGetPoint{b} \tkzDefPointBy[projection=onto A--C](M) \tkzGetPoint{c} \tkzDrawCircle[R](M,\r pt) \tkzDrawCircle[R](N,\R pt) \tkzDrawPolygon[very thick](A,B,C) \tkzDrawLines[dotted](N,A N,B N,C) \tkzDrawLines[dashed](M,a M,b M,c) \tkzMarkRightAngles(M,a,B M,b,C M,c,C) \tkzDrawPoints(A,B,C,M,N,a,b,c) \tkzLabelPoints[below left](A,M,a,c) \tkzLabelPoints[below right](B) \tkzLabelPoints[above](C,b) \tkzLabelPoints[below](N) \end{tikzpicture} \end{document}
\documentclass{article} \usepackage{tikz} \pagestyle{empty} \begin{document} \noindent In a right-angled triangle the two shortest sides got widths of 3 and 7, respectively. Then, the longest side has a width of \pgfmathparse{min(3^2 + 7^2)}\pgfmathresult. The smallest angle is about \pgfmathparse{atan(3/7)} \pgfmathprintnumber[precision=2]{\pgfmathresult} degrees. \end{document}
Go to next chapter.